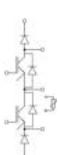


SEMITRANS® 5

Trench IGBT Modules

SKM 200 GTRL 066 T

Features


- Homogeneous Si
- Trench = Trenchgate technology
- $V_{CE(sat)}$ with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- INVERTER

Remarks

- Case temperature limited to $T_c = 125^\circ\text{C}$ max, recommended $T_{op} = -40..+150^\circ\text{C}$
- Recommended $T_{op} = -40..+150^\circ\text{C}$
- T_{vj} is intended as absolute maximum rating
- Fig.2 is referred to IGBT current capability

GTRL-T

Absolute Maximum Ratings		$T_{case} = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}	$T_j = 25^\circ\text{C}$	600		V
I_C	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 80^\circ\text{C}$	280 210		A A
I_{CRM}	$I_{CRM} = 2 \times I_{Cnom}$	400		A
V_{GES}		± 20		V
t_{psc}	$V_{CC} = 360\text{ V}$; $V_{GE} \leq 15\text{ V}$; $T_j = 150^\circ\text{C}$ $V_{CES} < 600\text{ V}$	6		μs
Inverse Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 80^\circ\text{C}$	27 20		A A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	40		A
I_{FSM}	$t_p = 10\text{ ms}$; half sine wave $T_j = 150^\circ\text{C}$	95		A
Freewheeling Diode				
I_F	$T_j = 175^\circ\text{C}$ $T_c = 25^\circ\text{C}$ $T_c = 80^\circ\text{C}$	270 200		A A
I_{FRM}	$I_{FRM} = 2 \times I_{Fnom}$	400		A
I_{FSM}	$t_p = 10\text{ ms}$; half sine wave $T_j = 150^\circ\text{C}$	1620		A
Module				
$I_t(\text{RMS})$		500		A
T_{vj}		-40 ... +175		$^\circ\text{C}$
T_{stg}		-40 ... +125		$^\circ\text{C}$
V_{isol}	AC, 1 min.	2500		V

Characteristics		$T_{case} = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT				
$V_{GE(\text{th})}$	$V_{GE} = V_{CE}$, $I_C = 3,2\text{ mA}$	5	5,8	6,5
I_{CES}	$V_{GE} = 0\text{ V}$, $V_{CE} = V_{CES}$ $T_j = 25^\circ\text{C}$		0,5	mA
I_{GES}	$V_{CE} = 0\text{ V}$, $V_{GE} = 20\text{ V}$ $T_j = 25^\circ\text{C}$		1200	nA
V_{CE0}	$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	0,9 0,7	1 0,8	V
r_{CE}	$V_{GE} = 15\text{ V}$ $T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$	2,7 5	4,5 6,5	$\text{m}\Omega$
$V_{CE(\text{sat})}$	$I_{Cnom} = 200\text{ A}$, $V_{GE} = 15\text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$	1,45 1,7	1,9 2,1	V
C_{ies} C_{oes} C_{res}	$V_{CE} = 25\text{ V}$, $V_{GE} = 0\text{ V}$ $f = 1\text{ MHz}$	12,3 0,76 0,36		nF
Q_G	$V_{GE} = -8\text{ V}...+15\text{ V}$	2254		nC
R_{Gint}	$T_j = 25^\circ\text{C}$	1		Ω
$t_{d(on)}$ t_r E_{on}	$R_{Gon} = 1\text{ }\Omega$ $di/dt = 1700\text{ A}/\mu\text{s}$	93 113 2,24		ns ns mJ
$t_{d(off)}$ t_f E_{off}	$R_{Goff} = 1\text{ }\Omega$ $di/dt = 2000\text{ A}/\mu\text{s}$	317 102 7,89		ns ns mJ
$R_{th(j-c)}$	per IGBT	0,21		K/W

SEMITRANS® 5

Trench IGBT Modules

SKM 200 GTRL 066 T

Features

- Homogeneous Si
- Trench = Trenchgate technology
- $V_{CE(sat)}$ with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- INVERTER

Remarks

- Case temperature limited to $T_c = 125^\circ\text{C}$ max, recommended $T_{op} = -40..+150^\circ\text{C}$
- Recommended $T_{op} = -40..+150^\circ\text{C}$
- T_{vj} is intended as absolute maximum rating
- Fig.2 is referred to IGBT current capability

Characteristics		Symbol Conditions	min.	typ.	max.	Units
Inverse Diode						
$V_F = V_{EC}$		$I_{Fnom} = 20 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$		1,45	1,7	V
V_{F0}		$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$		1	1,1	V
r_F		$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$		0,9	1	V
I_{RRM} Q_{rr} E_{rr}		$I_F = 20 \text{ A}$ $T_j = 150^\circ\text{C}$ $V_{GE} = -8 \text{ V}; V_{CC} = 300 \text{ V}$				A μC mJ
$R_{th(j-c)D}$	per diode			22,5	30	mΩ
				27,5	35	mΩ
Free-wheeling diode						
$V_F = V_{EC}$		$I_{Fnom} = 200 \text{ A}; V_{GE} = 0 \text{ V}$ $T_j = 25^\circ\text{C}_{\text{chiplev.}}$ $T_j = 150^\circ\text{C}_{\text{chiplev.}}$		1,4	1,6	V
V_{F0}		$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$		1,3	1,45	V
r_F		$T_j = 25^\circ\text{C}$ $T_j = 150^\circ\text{C}$		0,95	1	V
Q_{rr}		$T_j = 150^\circ\text{C}$		0,85	0,9	V
E_{rr}		$di/dt = 2000 \text{ A}/\mu\text{s}$ $V_{GE} = -15/+15 \text{ V}; V_{CC} = 300 \text{ V}$		2,2	3	V
I_{RRM}		$I_F = 200 \text{ A}$ $T_j = 150^\circ\text{C}$		2,1	2,7	V
$R_{th(j-c)FD}$	per diode			175,8		A
$R_{th(c-s)}$	per module			12		μC
M_s	to heat sink M6		3	5		mJ
M_t	to terminals M6		2,5	5		Nm
w				310		g
Temperature sensor						
R_{100}		$T_s = 100^\circ\text{C} (R_{25} = 5\text{k}\Omega)$		493±5%		Ω
						K

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

GTRL-T

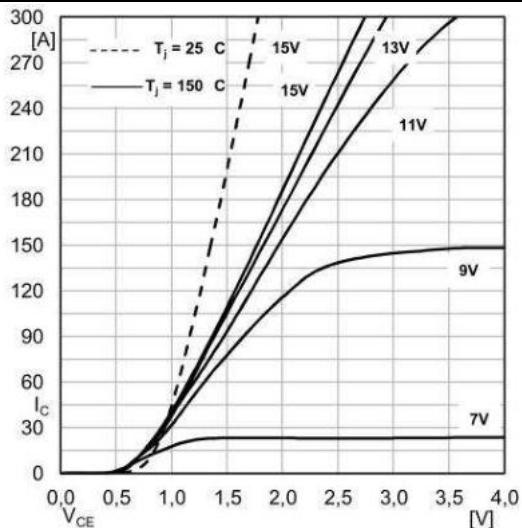


Fig. 1 Typ. output characteristic, inclusive R_{CC+EE}

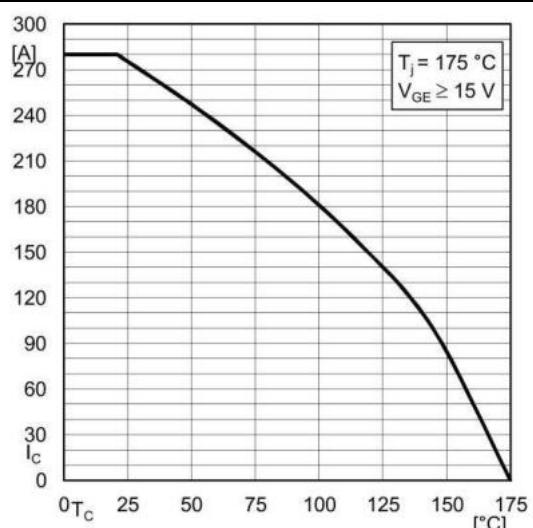


Fig. 2 Rated current vs. temperature $I_C = f(T_C)$

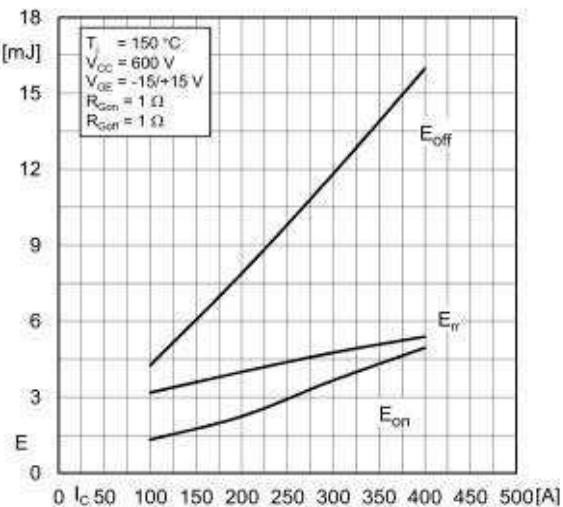


Fig. 3 Typ. turn-on /-off energy = $f(I_C)$

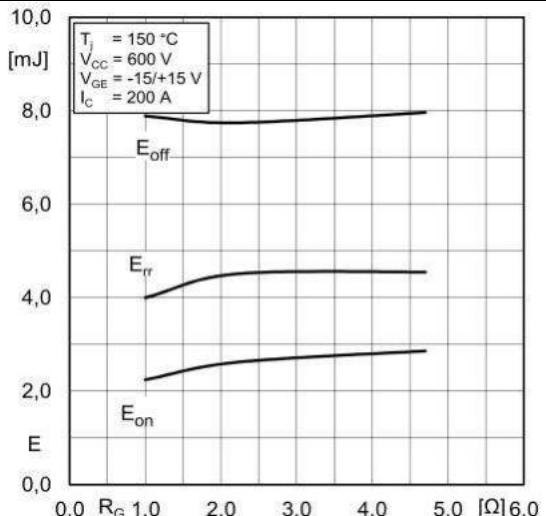


Fig. 4 Typ. turn-on /-off energy = $f(R_G)$

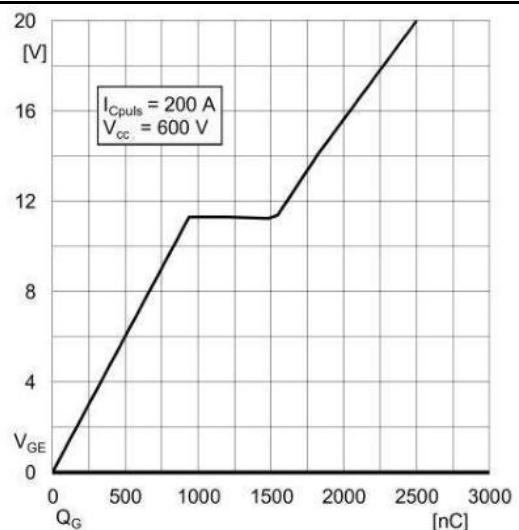
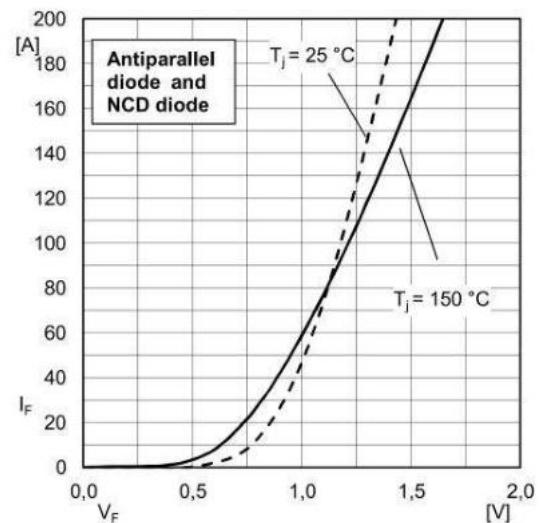
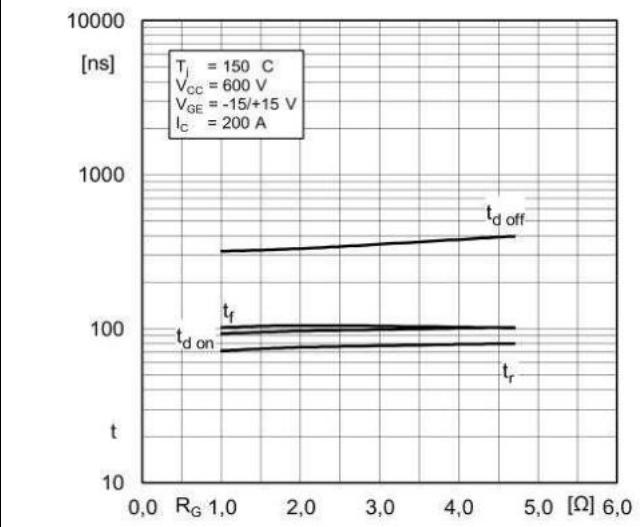
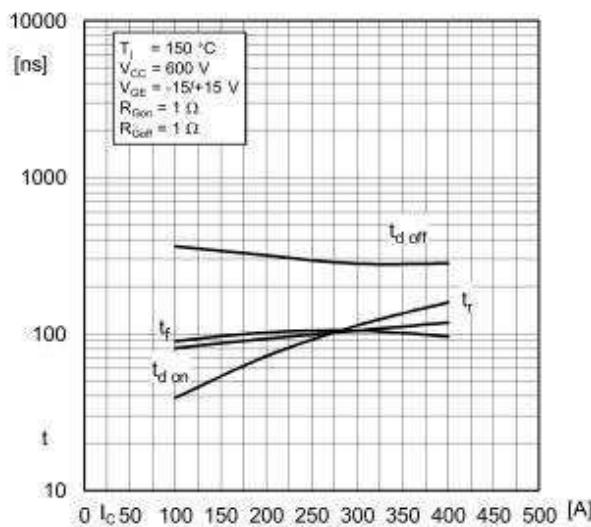
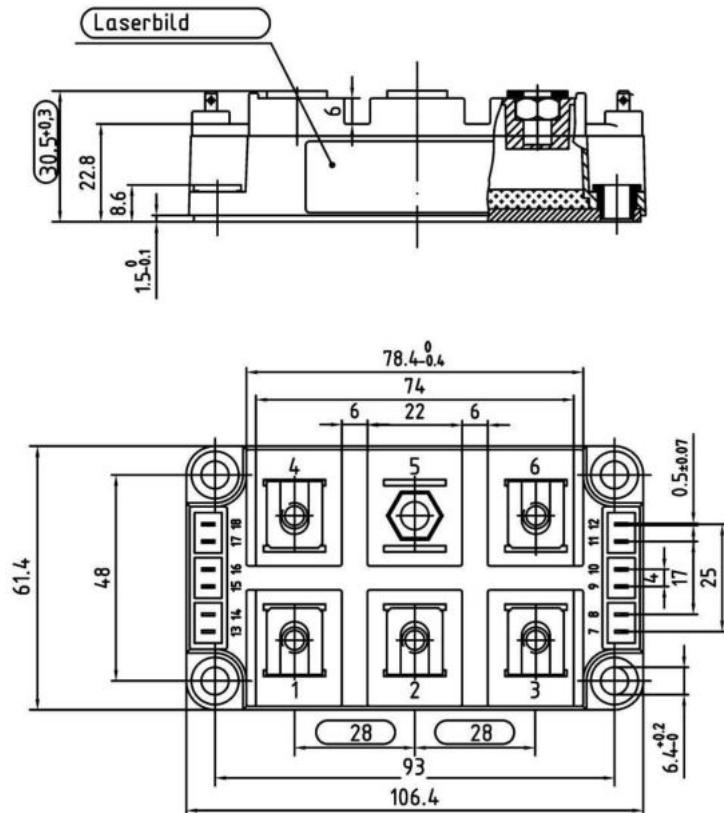
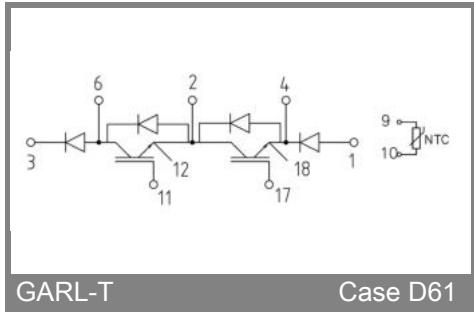






Fig. 6 Typ. gate charge characteristic



UL recognized

file no. E 63 532

Case D61

